Scalability of a pseudospectral DNS turbulence code with 2D domain decomposition on Power4+/Federation and Blue Gene systems

D. Pekurovsky1, P.K. Yeung2, D. Donzis2, S. Kumar3, W. Pfeiffer1, G. Chukkapalli1

1San Diego Supercomputer Center
2Georgia Institute of Technology
3IBM

SP SciComp, Boulder CO, July 20, 2006
Turbulence: examples

The small scales are important.
DNS code

- Code written in Fortran 90 with MPI
- Time evolution: Runge Kutta 2nd order
- Spatial derivative calculation: pseudospectral method
- Typically, FFTs are done in all 3 dimensions.
- Consider 3D FFT as compute-intensive kernel representative of performance characteristics of the full code
- Input is real, output is complex; or vice versa
3D FFT

Use ESSL library calls for 1D FFT on IBM, or FFTW on other systems (FFTW is about 3 times slower than ESSL on IBM)

Forward 3D FFT in serial. Start with real array \((N_x,N_y,N_z)\):

- **1D FFT in \(x\) for all \(y\) and \(z\)**
 - Input is real \((N_x,N_y,N_z)\).
 - Call SRCFT routine (real-to-complex), size \(N_x\), stride is 1
 - Output is complex \((N_x/2+1,N_y,N_z)\) – conjugate symmetry: \(F(k)=F^*(N-k)\)
 - Pack data as \((N_x/2,N_y,N_z)\) – since \(F(1)\) and \(F(N_x/2+1)\) are real numbers

- **1D FFT in \(y\) for all \(x\) and \(z\)**
 - Input is complex \((N_x/2,N_y,N_z)\)
 - Call SCFT (complex-to-complex), size \(N_y\), stride \(N_x/2\)
 - Output is complex \((N_x/2,N_y,N_z)\)

- **1D FFT in \(z\) for all \(x\) and \(y\)**
 - Input and output are complex \((N_x/2,N_y,N_z)\)
 - Call SCFT (complex-to-complex), size \(N_z\), stride \((N_xN_y)/2\)

Inverse 3D FFT: do the same in reverse order. Call SCFT, SCFT and SCRFT (complex-to-real).
3D FFT cont’d

Note: Alternatively, could transpose array in memory before calling FFTs, so that strides are always 1. In practice, with ESSL this doesn’t give an advantage (ESSL efficient even with strides > 1)

Stride 1: 28% peak Flops on Datastar
Stride 32: 25% peak
Stride 2048: 10% peak
Parallel version

- Parallel 3D FFT: so-called transpose strategy, as opposed to direct strategy. That is, make sure all data in direction of 1D transform resides in one processor’s memory. Parallelize over orthogonal dimension(s).
- Data decomposition: \(N^3 \) grid points over \(P \) processors
 - Originally 1D (slab) decomposition: divide one side of the cube over \(P \), assign \(N/P \) planes to each processor. Limitation: \(P \leq N \)
 - Currently 2D (pencil) decomposition: divide side of the cube (\(N^2 \)) over \(P \), assign \(N^2/P \) pencils (columns) to each processor.
Memory and compute power

• 2048³ on 2048 processors – 230 MB/proc. This problem fits on Datastar and Blue Gene. Extensive simulations under way.
• 4096³ on 2048 processors – 1840 MB/proc. This problem doesn’t fit on BG (256 MB/proc), and fits very tightly on Datastar.
 • Anyway, computational power of 2048 processors is not enough to solve problems in reasonable time. Scaling to higher counts is necessary, certainly more than 4096.

Therefore, using 2D decomposition is a necessity
(P > N)
1D Decomposition

1) Transform in X

2) Transform in Z

3) Transpose

4) Transform in Y
2D decomposition

1) Transform in X

2) Transpose X-Z

3) Transform in Z
2D Decomposition cont’d

4) Transpose Z-Y

5) Transform in Y
Communication

Global communication: traditionally, a serious challenge for scaling applications to large node counts.

- 1D decomposition: 1 all-to-all exchange involving P processors
- 2D decomposition: 2 all-to-all exchanges within \(p_1 \) groups of \(p_2 \) processors each \((p_1 \times p_2 = P) \)
- Which is better? Most of the time 1D wins. But again: it can’t be scaled beyond \(P=N \).

Crucial parameter is bisection bandwidth
Alternative approaches attempted

- Overlap communication and computation
 - No advantage.
- Hybrid MPI/OpenMP
 - No advantage.
- Transpose in memory, call ESSL routines with stride 1
 - No advantage or worse
Platforms involved

- **Datastar: IBM Power4+ 1.5 GHz**
 - at SDSC, up to 2048 CPUs
 - 8 processors/node
 - Fat tree interconnect

- **Blue Gene: IBM PowerPC 700 MHz**
 - at SDSC, up to 2048 CPUs
 - at IBM’s T.J. Watson Lab in New York state, up to 32768 CPUs (2nd in Top500 list)
 - 2 processors/node
 - 3D torus interconnect
Performance on IBM Blue Gene and Datastar

VN: Two processors per node
CO: One processor per node
A closer look at performance on BG

DNS 2048^3

- VN total
- CO total
- VN comm
- CO comm

N proc vs T x P

- 0 5000 10000 15000 20000 25000 30000 35000
- 0 20000 40000 60000 80000 100000 120000 140000

- 2048
- 4096
- 8192
- 16384
- 32768

San Diego Supercomputer Center
University of California, San Diego
Communication model for BG

- 3D Torus network: 3D mesh with wrap-around links. Each compute node has 6 links.
- Modeling communication is a challenge for this network and problem (mapping 2D processor geometry to 3D network topology). Try to do a reasonable estimate.
- Assume message sizes are large enough, consider only bandwidth, ignore overhead.
- Model CO (VN is similar)
Two subcommunicators: S1 and S2

\[P = P_1 P_2 = P_x P_y P_z \]

Step 1: All-to-all exchange among \(P_1 \) processors within each group \(S_1 \)

Step 2: All-to-all exchange among \(P_2 \) processors within each group \(S_2 \)

By default tasks are assigned in a block fashion (although custom mapping schemes also available to the user and are interesting option)

- \(S_1 \)'s are rectangles in X-Y plane: \(P_1 = P_x \times (P_y / k) \)
- \(S_2 \)'s are \(k \) Z-columns: \(P_2 = k P_z \)

\(B = 175 \text{MB/s}, \) 1-link bidirectional bandwidth
Upper bound

- Assume dimensions are independent
- Find bottlenecks in each dimension, sum up the maximum time in each dimension
- Some links are idle some of the time

Take first step – communicator group is a plane $P_x \times (P_y/k)$

Assume torus (wraparound links) in x dimension, but not in y for $k > 1$

Bisection bandwidth across y lines is $b P_x$

Proceed in P_x, stages

The number of messages exchanged is $P_x, (P_y/2k)^2$ for each stage

Total time for y-dimension bottleneck is $t_y = (N_b/B) P_x, (P_y/2k)^2$

Now independently consider X direction, and derive

$$t_x = (N_b/B) (P_y/k) (P_x /2)^2 (1/2)$$

Summing up, and using $N_b=(4N^3)/(P \ P_1)$, we get

$$T_1 = (N^3/P\ B) ((1/2)P_x+(1/k)P_y)$$
Upper bound cont’d

Now step 2: k Z-lines in each communicator, all lie in Y-Z planes
Again, assume staged implementation. First communicate along y.
Dimension size is k, bisection bandwidth is \(bP_x \) but it’s shared among \(P_1 \) groups. Do this \(P_z \) times.

Time is \(\frac{N_b}{b} \left(\frac{k}{2} \right)^2 \frac{P_1 P_z}{P_x} (1/2) = \left(\frac{N^3}{Pb} \right) \frac{P_y}{2} \)

Finally, exchange within Z-lines (k times)
\(T_z = \frac{N_b}{b} \left(\frac{P_z}{2} \right)^2 /2 \) (2 comes from torus links)
So \(T_2 = \left(\frac{N^3}{Pb} \right) (P_y + kP_z/2) \)

Summing up,
\[
T_{up} = T_1 + T_2 = \left(\frac{N^3}{P B} \right) \left(\frac{P_x}{2} + (1/2+1/k)P_y + P_z/2 \right)
\]

For the lower bound, assume all links busy, and only the maximum time counts. Obtain
\[
T_{lower} = \left(\frac{N^3}{P B} \right) \left[\text{Max}(P_x/2, P_y/k) + 1/2 \text{ Max}(P_y, P_z) \right]
\]
Communication model for BG

![Graph showing communication model](image)
Summary

• 2D decomposition enables significantly increased scalability of the DNS turbulence code
• Achieve good scaling on both IBM SP4 and BG/L (up to 32k processors)
• Ready for next generation of machines
• DNS turbulence is one of the 3 Model Problems in the recent NSF Petascale RFP