Introduction to the Blue Waters Project

Dr. William Kramer
NCSA/University of Illinois
Deputy Director of Blue Waters
wkramer@ncsa.uiuc.edu/ - http://www.ncsa.uiuc.edu/BlueWaters
(217) 333-6260/(217) 979-7577
Petascale computing will enable advances in a broad range of science and engineering disciplines:

Molecular Science

Weather & Climate Forecasting

Astronomy

Earth Science

Health
What Users Want From Petascale Systems

• Performance
 • How fast will the system process work if everything is working well

• Effectiveness
 • The likelihood clients can get the system to do their work when they need it

• Reliability
 • The likelihood the system is available to do the work

• Consistency
 • How often will the system process the same or
Goals of Blue Waters Project

- **Science and Engineering**
 - Provide knowledge/expertise/services to help researchers develop applications that take full advantage of Blue Waters

- **Computing System Hardware and Software**
 - Sustain ≥ 1 petaflops on range of science and engineering applications
 - Enhance petascale applications development environment and systems software

- **Education**
 - Prepare next generation of scientists and engineers for research at the frontiers of petascale computing and computation

- **Industrial Engagement**
 - Enable industry to utilize petascale computing to address their most challenging problems and enhance their competitive position
Watch the Word **Sustained**

- The supercomputing community unfortunately often uses *peak* performance to measure a system’s processing power.
- Peak is like buying a car based solely on the speedometer’s top speed—the car can’t reach it and you can’t use it.
 - Linpack is like measuring a car based on its NASCAR results – highly unrealistic for most except maybe a few moments during a vacation in Las Vegas
- Blue Water’s and NSF focus on *sustained* performance in a way few have been before.
- *Sustained* is the computer’s performance on a broad range of applications that scientists and engineers use every day.
- The Blue Waters concept of *sustained* performance is similar to the Sustained System Performance (SSP) used at NERSC
Selection Criteria for Blue Waters

- Maximum Core Performance
 … to minimize number of cores needed for a given level of performance as well as lessen the impact of sections of code with limited scalability
- Large, Low latency, High-bandwidth Memory Subsystem
 … to enable the solution of memory-intensive problems
- Low latency, High-bandwidth Communications Subsystem
 … to facilitate scaling to the large numbers of processors required for sustained petascale performance
- High-bandwidth I/O Subsystem
 … to enable solution of data-intensive problems
- Maximum System Integration; Mainframe Reliability, Availability, Serviceability (RAS) Technologies
 … to assure reliable operation for long-running, large-scale simulations
The Blue Waters Project is embedded in a cluster of related activities in computer science, engineering and technology at Illinois:

CCI: Cloud Computing Initiative
N CofE: NVIDIA Center of Excellence
UPCRC: Universal Parallel Computing Research Center
Great Lakes Consortium for Petascale Computation (www.greatlakesconsortium.org)

Goal: Facilitate the widespread and effective use of petascale computing to address frontier research questions in science, technology and engineering at research, educational and industrial organizations across the region and nation.
Blue Waters Project Components

<table>
<thead>
<tr>
<th>Petascale Education, Outreach and Industry</th>
<th>Petascale Computing Resource Allocations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Petascale Application Collaboration Team Support</td>
</tr>
<tr>
<td></td>
<td>Outstanding User and Production Support</td>
</tr>
<tr>
<td></td>
<td>WAN connections, Consulting, System Management, Security, Operations, ...</td>
</tr>
<tr>
<td></td>
<td>Value added Software – Collaborations</td>
</tr>
<tr>
<td></td>
<td>Value added hardware and software</td>
</tr>
<tr>
<td></td>
<td>Blue Waters Base System – Processors, Memory, Interconnect, On-line Storage, System Software, Programming Environment</td>
</tr>
<tr>
<td></td>
<td>Petascale Computing Facility</td>
</tr>
</tbody>
</table>

Great Lakes Consortium
Users of Blue Waters

- Blue Waters is an open science platform
 - Blue Waters must support many different types of usage
 - Benchmarks are a very limited approximation of some of the usage
 - Blue Waters is the only Leadership class resource NSF has so all types of projects will be selected
- Blue Waters users are selected by the best science projects across all disciplines
 - Projects will change throughout time
- Blue Waters Users are not yet known
 - Will vary (different application types, groups, requirements),
 - Geographically distributed
- Almost guaranteed that the selected users will be
 - Very experienced users
 - Will run applications at other large facilities
 - Could very well use community codes
 - Will be pressed to produce
Petascale Computer Resource Allocation Process (PRAC)

- First round winners to be announced March – June 2009
- Request an allocation on the Blue Waters system.
- Proposers must demonstrate proposed science or engineering research problem requires and can effectively exploit the petascale computing capabilities offered by Blue Waters.
- Receive support from Blue Waters team
- Provides travel funds
Existing Optimization Efforts

Specified Test Problems

- Three petascale applications/problem sizes
 - Lattice-Gauge QCD (MILC)
 - Molecular Dynamics (NAMD)
 - Turbulence (DNS3D)
- Three non-petascale applications/problem sizes
 - Lattice-Gauge QCD (MILC)
 - Materials science (PARATEC)
 - Weather prediction (WRF)
- Ultimate Milestones
 - Time-to-solution target (or 1 PFLOP sustained) for specified problem (size, time, physics, method)
 - Verification of numerical solution
- Future Foci determined as PRAC awards are made
Molecular Dynamics Petascale Application

• Problem Description
 • A periodic system of 100,000 lipids and 1000 curvature-inducing protein BAR domains; total system size of 100 million atoms
 • CHARMM27 all-atom empirical force field
 • Velocity Verlet time-stepping algorithm,
 • Langevin dynamics temperature coupling,
 • Nose-Hoover Langevin piston pressure control,
 • Particle Mesh Ewald (PME) algorithm for electrostatics
 • Time step = 0.002 ps, 64-bit floating point arithmetic
 • Target run time for 10 ns simulation time = 25 hours.
 • Dump positions, velocities, and forces for all atoms to disk every 500 steps.
• Solver
 • NAMD (Schulten, http://www.ks.uiuc.edu/Research/namd/)
Making Progress without target hardware

Key Elements

Applications

Single Core simulator, Network Simulators - BigSim (Kale)/Mercury (IBM)

Application Modeling and Analysis

Execution on Hardware (Power5+, Power6, BlueGene/P, Cray XT4/5, Ranger)

Execution on Power 7 (Early and Final)
Measuring and Improving Performance

- Single chip performance estimation
 - SystemSim performance simulator (with stats)
 - Power5+, Power6, BlueGene/P, Cray XT4/5, Ranger, etc.
- Scalability estimation
 - Power5+, Power6, BlueGene/P, Cray XT4/5, Ranger, etc.
 - BigSim (Kale)/Mercury (IBM) network simulators (June ‘09)
 - LANL performance models + other modeling
- Optimization
 - FP MPI, Tau, HPCS Toolkit, etc. to identify bottlenecks
 - Highly tuned libraries, loop transformations, prefetching, vector intrinsics, reorganized data structures, algorithmic improvements
 - Overlap communication with computation, one-sided communication, improved mapping of tasks to cores, MPI+OpenMP
Blue Waters—Interim systems

An interesting challenge: The hardware on which Blue Waters is based does not exist yet. NCSA has installed four systems to prepare for Blue Waters.

- “BluePrint,” an IBM POWER575+ cluster for studying the software environment.
- IBM POWER6 systems for developing the archival storage environment and scientific applications.
- An x86 system used to simulate the Blue Waters system. This allows application researchers to study the performance of scientific codes on Blue Waters’ hardware implementations.
- A shared testbed for accelerator/GPU investigations
IBM Contract for the Base System - A Superset of DARPA PERCS Demonstration

- Base System contract – sufficient to meet the minimum requirements of Track 1 RFP
- Contract specifies – in detail
 - Base system hardware
 - Base system software
 - Base programming environment
 - Languages
 - Tools
 - Advanced features
- Contract has firm performance requirements
 - Benchmarks, System services, Reliability, On-going Support
- Contract specifies schedule and performance milestones
- Specifies a number of collaborations and a process to create new collaborations
System Components

- Computational Nodes
 - Vast majority of the nodes
- I/O Nodes
 - Supports GPFS and other I/O functions
- Service Nodes
 - Programming environment
 - Interactive login
 - System management functions
- These nodes plus system management assembled from liquid cooled building blocks
Blue Waters Petascale Computing System

Power Architecture Trends

<table>
<thead>
<tr>
<th>System Attribute</th>
<th>Power 5</th>
<th>Power5+</th>
<th>Power6</th>
<th>Blue Waters*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clock Rate (GHz)</td>
<td>1.9</td>
<td>2.3</td>
<td>4.7</td>
<td></td>
</tr>
<tr>
<td>Peak Ops per Clock</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Peak Performance GF</td>
<td>7.6</td>
<td>9.2</td>
<td>18.8</td>
<td></td>
</tr>
<tr>
<td>Threads per core</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>≥ 2</td>
</tr>
<tr>
<td>Number of Sockets/SMP</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Number of Cores per Socket</td>
<td>1/2</td>
<td>2</td>
<td>4</td>
<td>≥ 4</td>
</tr>
<tr>
<td>Number of Cores per SMP</td>
<td>8/16</td>
<td>16</td>
<td>32</td>
<td>≥ 16</td>
</tr>
<tr>
<td>Cache</td>
<td>L1, Shared {L2, L3} L1, Shared {L2, L3} L1, Shared {L2, L3} {L1, L2} Shared L3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Memory per Core (IH) (GB)</td>
<td>2-4</td>
<td>2-4</td>
<td>2-4</td>
<td>≥ 2</td>
</tr>
<tr>
<td>VMX</td>
<td>HPS</td>
<td>HPS/IB</td>
<td>HPS/IB</td>
<td>New</td>
</tr>
<tr>
<td>MPI Latency</td>
<td>~7</td>
<td>~3.4-5.2</td>
<td>~3.4-5.2</td>
<td>< 5</td>
</tr>
</tbody>
</table>

* Reference petascale computing system (no accelerators).
<table>
<thead>
<tr>
<th>System Attribute</th>
<th>Typical Cluster (NCSA Abe)</th>
<th>Track 2 (TACC)</th>
<th>Blue Waters*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vendor</td>
<td>Dell</td>
<td>Sun</td>
<td>IBM</td>
</tr>
<tr>
<td>Processor</td>
<td>Intel Xeon 5300</td>
<td>AMD</td>
<td>Power 7</td>
</tr>
<tr>
<td>Peak Performance (PF)</td>
<td>0.090</td>
<td>0.58</td>
<td>>1.0</td>
</tr>
<tr>
<td>Sustained Performance (PF)</td>
<td>~0.005</td>
<td>~0.06</td>
<td>>0.8</td>
</tr>
<tr>
<td>Number of Processor Cores</td>
<td>9,600</td>
<td>62,976</td>
<td>>200,000</td>
</tr>
<tr>
<td>Amount of Memory (PB)</td>
<td>0.0144</td>
<td>0.12</td>
<td>>10</td>
</tr>
<tr>
<td>Amount of Disk Storage (PB)</td>
<td>0.1</td>
<td>1.73</td>
<td>>500</td>
</tr>
<tr>
<td>Amount of Archival Storage (PB)</td>
<td>5</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>External Bandwidth (Gbps)</td>
<td>40</td>
<td>10</td>
<td>100-400</td>
</tr>
</tbody>
</table>

* Reference petascale computing system (no accelerators).
Collaborations Basic Principles

- Ensure that lower risk IBM hardware and software is sufficient to support petascale applications
- Invest in higher risk IBM and non-IBM hardware and software that will:
 - Improve user, programmer & operator productivity
 - Broaden range of applications that can be well supported
 - Improve performance
 - Provide risk mitigation strategies
- Ensure that BW software is compatible with software on other high end NSF platforms
 - Contribute to Open Source and help port of open source SW to Blue Waters
Value Added Collaboration Areas

- Application Programming Environments – Eclipse based
- Advanced Programming Models – GSM, UPC, CAF, others
- Common Tools Infrastructure – A
- Petascale-Exascale Hierarchical Storage
- System Monitoring and Response
- Workflow and Data Management
- Compilers
- Interconnect Topology
- Petascale Application Collaboration Teams (PACTS)
 - 5 currently defined based on NSF benchmarks – Molecular Dynamics, Turbulence, QCD, Materials, Weather/Climate
 - ~2-5 others will be based on proposed projects
- Other Collaborations defined as the need arises (e.g. Cybersecurity)
Overall Software Architecture

- Running the System and Basic Services
 - Operating System
 - File Systems
 - Mass storage-HPSS
 - Checkpoint/Restart
 - Integrated, automated console
 - Cybersecurity
- Debugging and Tuning Applications
 - HPCS Tools
 - Performance tuning
 - Debugging
 - IDE

- Running Applications
 - Managing workflow
 - Managing data
 - Investigating results

- Developing Applications
 - Compilers
 - Parallel Programming Models
 - Frameworks
 - Computational Libraries
 - Simulators
 - Performance of programming models
Full-featured OS Sockets, threads, shared memory, checkpoint/restore

Languages: C/C++, Fortran (77-2008 including CAF), UPC

IO Model: Global, Parallel shared file system (>10 PB) and archival storage (GPFS/HPSS) MPI I/O

Environment: Traditional (command line), Eclipse IDE (application development, debugging, performance tuning, job and workflow management)

Libraries: MASS, ESSL, PESSL, PETSc, visualization…

Programming Models: MPI/MP2, OpenMP, PGAS, Charm++, Cactus

Low-level communications API supporting active messages (LAPI)

Hardware

- Multicore POWER7 processor with Simultaneous MultiThreading (SMT) and Vector MultiMedia Extensions
- Private L1, L2 cache per core, shared L3 cache per chip
- High-Performance, low-latency interconnect supporting RDMA

Resource Manager: Batch and interactive access

- Performance tuning: HPC and HPCS toolkits, open source tools

Parallel Debugging at Full Scale

- Low-level communications API supporting active messages (LAPI)

Environment: Traditional (command line), Eclipse IDE (application development, debugging, performance tuning, job and workflow management)
File System is GPFS

- IBM is implementing scaling changes in GPFS for the HPCS/DARPA project.
- Blue Waters will implement those changes in a persistent manner.
- GPFS configured to accommodate other local systems in a single namespace.
- Performance requirements are appropriately scaled to BW characteristics.
HPSS Hardware consists of three tape robots and appropriate numbers of tape drives
 • Expect to expand this thru the lifetime of BW
HPSS integrated with BW
 • GPFS-HPSS Interface
 • Import-Export Portal
 • Traditional HPSS commands
NCSA is contribution RAIT implementation to the HPSS community as part of BW
File System is Integrated with HPSS

- Using the GPFS-HPSS Interface
 - GHI Demonstrated at SC 06-07-08
 - Design co-developed by NERSC and IBM
- Single Name Space
- Information Lifecycle management and DMAPI functions automatically move data from rotating disk to near line storage and back
- System Management Control for policy (size of files, ages of file, etc).
- A core part of a new operational concept
 - Transparent data management
 - “Virtual filesystem”
 - Lighter-weight backup
Blue Waters Can Use Either Linux Or AIX

- Same functionality specified under either OS
 - With some caveats on Linux side due to lack of control
- All performance commitments from IBM apply equally to either OS
 - It is possible one or the other will perform better
- IBM and NCSA (as organizations) do not favor one or the other
 - There is lot of internal opinion at the group level
 - What NCSA chooses will likely also be what DARPA uses
- Will be a qualitative decision based on quantitative information
Main Decision Factors

- Impact on application performance
 - Jitter (OS but also overall system)
 - Memory management [large pages]
 - Scheduling [core affinity]
 - Resource consumption [memory]
- Impact on reliability
 - Unknown at this time
- OS services performance (I/O, IP…)
 - Expected to be neutral
- Other functionality
 - No major differences are expected
- User preferences (application programmers, 3rd party tools providers, industrial partners…)
 - Linux preference expected
- Support of user tools/environments
 - Linux advantage expected
Additional Decision Factors

• Risk for long-term lack of support
• Points of responsibility within IBM for SW
 • Development/support
• IBM's testing/debugging resources for each OS
• Feature introduction schedules and timing
• Application specific requirements
• Accelerator drivers and support
• Fallback for entire OS or for components
• Detailed functionality
 • Cyber security (IPSec, IPTables)
 • Resource management
• Advisory Committees
Petascale Computing Facility

- Future home of Blue Waters and other NCSA hardware
- 88,000 square feet total – expandable
- 6’ Raised Floor
- 20,000+ square foot machine room
- Onsite cooling towers augment central chilled water system to save even more energy
Accelerator Task Objective

- Goal: Evaluate the potential of incorporating accelerators for the Blue Waters
 - Small additional acquisition cost
 - Small additional power consumption
 - Small additional application development efforts
 - Potential of Large performance increase for select applications
- Main tasks
 - Select appropriate accelerator technology and schedule
 - Identify the appropriate application development tools/framework
 - Educate application developers about accelerators
 - Provide intermediate application development systems
- Progress
 - Several encouraging studies – Chemistry and Materials
Education - Undergraduate Petascale Education Program

- Undergraduate efforts promote participation of faculty and students from diverse institutions and fields
 - 2- and 4-year primarily undergraduate colleges and universities
 - Minority Serving Institutions
 - EPSCoR institutions
 - Across all fields of study

- Three areas of emphasis
 - Professional development workshops for undergraduate faculty
 - Undergraduate materials development assistance
 - Undergraduate student internships
Education - Faculty Workshops

• **Goal:** prepare faculty for petascale computing education and research
 • Incorporate computational thinking and petascale resources in undergraduate classroom
 • Quantitative Reasoning, Computational Thinking, Multiscale Modeling for all courses
 • Use of PetaApps in upper division courses
 • Emphasize modeling over programming
 • Develop competence and confidence to mentor undergraduate research and collaborate with research universities

• **Leveraging SC08-SC11 Education Programs**
• **Collaborating with TeraGrid EOT, Krell Institute, Sigma Xi, etc.**
Faculty Workshops Announced

• Faculty professional development and curriculum development for petascale computing education and research
• Leveraging SC09 Education Program week-long summer workshops:
 • May 17-23: Oklahoma State U (EPSCoR) - chemistry
 • June 7-13: U Calif Merced - biology
 • June 7-13: Kean University (MSI) - parallel and cluster computing
 • June 14-20: Widener U - physics
 • July 5-11: Atlanta University Center (MSI) - computational thinking
 • July 5-11: Louisiana State U (EPSCoR) - parallel and cluster computing
 • July 12-18: Florida State U - pre-college
 • July 12-18: Ohio Supercomputer Center - engineering
 • Aug 2- 8: Arkansas U (EPSCoR) - computational thinking
 • Aug 9-15: Oklahoma U (EPSCoR) - parallel and cluster computing
• Meeting with instructors in April to incorporate petascale content into the summer workshops
Education - Materials Development

- Goal: prepare students for petascale computing
- Compelling examples in contemporary science, from desktop to grid to petascale incorporating:
 - Quantitative reasoning
 - Computational thinking
 - Multiscale modeling
- Thirty (30) modules targeted for development in all fields of science and engineering - ~10 per year
- Development cycle over 18 months per module
 - Materials development; classroom field test; VVA review; publish
 - Stipend paid to authors after acceptance in CSERD
Education - Undergraduate Internships

- **Goal**: prepare selected students for petascale computing research and education
 - Embed students in Blue Waters research groups
 - Full-year internship starting in summer
 - Participation in SC08-11 Education Programs
- **Interns interact across projects**
 - Wiki, video conferencing
 - Threaded discussions
 - Annual meeting
- **Initial funding for up to 5 per year, starting this summer**
Education - Virtual School of Computational Science and Engineering (VSCSE)

- Goal: Prepare the current & next generation of scientists and engineers to utilize leading edge computer systems
- A multi-state, multi-institutional virtual organization
 - Bring together faculty at CIC, research universities and institutions in the GLCPC to leverage geographically dispersed expertise
 - Build on CIC infrastructure and course-sharing agreements
- Increase and enhance HPC and petascale curricula available to graduate students
 - Define core competencies in HPC & petascale, identify gaps, establish best practices across the CIC
 - Develop on-line learning materials, training modules, courses, summer schools, workshops, and seminars
- Four Phase Development Plan
Education - Virtual School Summer Schools

• Accelerators for Science and Engineering Applications
 2008 Summer School
 • 42 students attended from 179 applications
 • Participants reported summer school contributed “a lot” to their understanding and abilities.
 • Materials from the Summer School are available on-line

• Challenge is to scale-up to reach many more students

• Two 2009 Summer Schools announced
 • Scaling to Petascale - August 3-7
 • Many-core Processors - August 10-14
 • Synchronous HD access at 4 sites plus webcast of sessions
 • All materials to be available on-line
Summary

• The scientific need for Blue Waters exists
• Blue Waters is a well balanced system designed to run a wide range of applications at the sustained petaflop/s
• Blue Waters is much more than just a large computing system
• Blue Waters has the potential of setting the direction towards Exascale computing
• NSF, NCSA, U of I and the GLCPC are the right partners to make Blue Waters sustained Petascale Computing a Reality
Questions

- Blue Waters Contributions
 - PIs
 - Thom Dunning, Marc Snir, Bill Gropp, Wen-mei Hwu, Bill Kramer
 - Past PIs – Rob Pennington, Ed Seidel
 - Partners (more in the future)
 - Shodor, RENCI, LSU, LANL
 - Funding Agents
 - NSF, State of Illinois, University of Illinois
- Blue Waters Staff
- Vendors
 - IBM, others TBD